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Amplification of surface plasmon polaritons in the
presence of nonlinearity and spectral
signatures of threshold crossover
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We describe the effects of nonlinearity on propagation of surface plasmon polaritons (SPPs) at an interface
between a metal and an amplifying medium of the externally pumped two-level atoms. Using Maxwell equa-
tions we derive the nonlinear dispersion law and demonstrate that the nonlinear saturation of the linear
gain leads to formation of stationary SPP modes with the intensities independent from the propagation dis-
tance. Transition to the regime of stationary propagation is similar to the threshold crossover in lasers and
leads to narrowing of the SPP spectrum. © 2009 Optical Society of America
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Delivery of electromagnetic energy from macro- to
nanoscales and its direct generation in nanostruc-
tures are the challenging problems of nanophotonics.
They are particularly important for plasmonics and
metamaterials, which promise subwavelength local-
ization and advanced control of light in photonic
nanocircuits. However, metal structures typically
suffer from large intrinsic (ohmic) losses hampering
attractive applications. On the other hand, the elec-
tromagnetic field confinement and enhancement as-
sociated with surface plasmons have been proposed
to control excitation of active emitters and achieve a
plasmonic laser (spaser) [1,2]. Propagating surface
plasmon polaritons (SPPs) at an interface with an
amplifying dielectric material have been studied
theoretically, see, e.g., [3,4] and references therein,
and practically demonstrated using optically pumped
dyes [5-7] and erbium-doped glass [8]. In particular,
a distinct threshold in the dependence of the output
SPP intensity on gain and the simultaneous signifi-
cant narrowing of SPP spectra have been reported in-
ferring signatures of stimulated SPP emission [7].

Theory of SPPs interacting with an amplifying me-
dium has been so far limited to the linear case
[1,3,4,6,7]. This approximation describes the SPP
modes, where the linear growth of the amplified
SPPs is not balanced by the nonlinear losses. In the
linear theory plasmons with the real propagation
constant (in the SPP case) or the real frequency of the
oscillations (in the spaser case) can be found only at
the threshold, where the linear loss is exactly bal-
anced by the linear gain [3]. However, in practice, the
gain-loss balance should be maintained even above
the threshold. This is because the amplification of
SPPs is expected to be fully compensated by the non-
linear losses ensuring existence of SPPs with the real
propagation constants.

Our main aim here is to present a theory of SPP
amplification accounting for saturation of the linear
gain by the nonlinear losses. This theory predicts the
appearance of SPP modes with the stationary values
of the amplitudes reached above the threshold and
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reveals the crucial role of nonlinearity in shaping of
the SPP spectra. We start our analysis from the time-
independent Maxwell equations for TM waves:

ﬁZZEQ,c - aszzl' == Dxa (1)
aszalc - &xxE; =D2' (2)

Here z is the coordinate along the interface and the x
direction is orthogonal to it, and both are measured
in the units of 1/k=\,,/(27), where Ay, is the
vacuum wavelength. For the constitutive relation we
assume D=(s+|E'|?)E’, where e=¢&'+ie” is the lin-
ear permittivity and y=v'+ivy’ is the nonlinear sus-
ceptibility. Below we use ¢ and y with subscripts d
and m when referring to the dielectric (x>0) and the
metal (x<0), respectively. The metal is assumed lin-
ear, y,,=0. Amplification in the dielectric is described
using the two-level model with relatively small SPP
intensities. Susceptibility of the two-level atoms is
x(8)=a(5-i)/(I'?+ &%) [9], where & is the detuning of
the SPP frequency from the atomic resonance fre-
quency and I'=(1+|E'[2/|E |?)"2 is the dimensionless
intensity dependent linewidth. & and I' are both nor-
malized to the physical transition linewidth. « is the
dimensionless gain per unit length. We assume below
that the SPP intensity is less than the saturation in-
tensity |E |? a particular value of the latter depends
on a material choice and is not important here. The
effect of the nonlinear saturation of the linear gain
discussed below should not be confused with and at-
tributed to |E |2

We seek solutions of Egs. (1) and (2) in the form
E’(x,z)=E*E‘(x)exp(iﬂz), where B is the propagation
constant. Expanding I" and y into the Taylor series in
|E|2 we find eg=g,+a(5+i)/(1+82), yy=ali-0)/(1
+6%)?2, where g, is the dielectric constant of the back-
ground material hosting the two-level atoms. For a
>0 we have linear gain and nonlinear absorption,
which both are maximal at the line center §=0. We
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are not taking into account the metal dispersion, as-
suming that it is negligible relative to the dispersion
introduced by the strong two-level resonance. Linear
limit of the theory developed below admits arbitrary
complex B’s. However nonlinear results require the
stationarity of the SPP intensities with respect to the
propagation coordinate z, which is achieved due to
balance between all the loss and gain mechanisms.
Formally the balance condition is expressed as Im 8
=0.

The exponentially decaying for x <0 solutions can
be readily found, since the problem is linear inside
the metal: E . =Be?* E, =(iq,,/B)Be?*, Re(q,,)>0.
Here g2 =%-¢,, and |B|? is the SPP intensity on the
metal side of the interface. The system of equations
we need to solve for x>0 is

BzEx + iﬁaxEZ = [8d + 7d(|Ex|2 + |Ez|2)]Exa (3)

lﬂaxEx - &xsz = [Sd + 7d(|Ex|2 + |Ez|2)]Ez (4)

The boundary conditions require continuity of £, and
D, at x=0. Assuming that E,,, E,, are the field com-
ponents on the dielectric side of the interface and
knowing solutions inside the metal we express the
boundary conditions using only the fields in the di-
electric:

BSWLEZO = iQm[sd + 7d(|Ex0|2 + |E20|2)]Ex07 (5)

Solving Egs. (3) and (4) perturbatively under the as-

sumption that nonlinear terms y,|E|? are small we
found

E, =Ae ™1 + w,y,|APe 8 + O(|y4/»)},  (6)

44
E,= ﬁAe‘Qd’“{l +w, yglA[Pe 2 8ea + O(|yyH)}.
l

(7)

Here q(21=B2—8d, Re(q4)>0, and w,, are some con-
stants not shown here. |A|? characterizes the SPP in-
tensity on the dielectric side of the interface. Substi-
tuting the above solutions into Eq. (5), we find the
dispersion law for SPPs accounting for losses in
metal nonlinearity and gain in the dielectric

Emda + €adm = YalAIPF + O(|y4). (8)
The constant F' is given by

|qd|2
F= 7 +1
Qa€m + Imeaq + 2Re(q ) (BPen/eq — @mda)

4Re(q,)(Re(gy) +q4)

Dispersion of nonlinear SPPs in the absence of gain
and loss has been previously derived, e.g., in [10].
For |A|=0, Eq. (8) transforms into a well-known
linear dispersion law for SPPs, which is readily re-
solved with respect to B: B=p,=(e,eq)/(eq+€y).
Practically, SPPs can be excited either directly by the
two-level emitters (dye molecules, quantum dots,
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etc.) or externally coupled into the system, e.g.,
through a prism or a grating. Depending on the spa-
tial variations of the emitter density and on the exci-
tation type (optical, electric, or chemical pumping),
the population inversion and hence the gain coeffi-
cient @ may vary with the distance from the inter-
face, see, e.g., [4]. We will not consider these effects in
order to focus on the role of nonlinearity and to de-
rive a closed analytical expression for the nonlinear
SPP dispersion. To obtain physical estimates for our
dimensionless calculations, we used &;,=1.8 (polymer)
and ¢,,=-15+10.4 (silver at \,,,=530 nm). For these
parameters, without the resonant atoms (a=0)
the characteristic SPP propagation distance is
(k Im B))"'=30 um.

If we neglect the effect of nonlinearity, the
condition Im B;=0 corresponds to the lossless SPP
propagation, and it is achieved at the gain
threshold a=ap:  ay=1/2¢][(|e,n]?—2¢0€48) —{(|e|?
—2¢! £,0)2—4(el )2(e5)2(1+ )}2]. As expected, the
lowest gain ag=a;, required for the lossless propa-
gation happens at the exact resonance (5§=0): a;,
=0.00575. For example for a=1.5a,,;, and 2a,,;, the
characteristic SPP gain length (kIm 3;)"'=65 um
and 30 um, respectively. Intensity of the nonstation-
ary (Im 8#0) SPPs in the linear case can be easily
calculated: I;~e~2?™™ A The typical dependence of I,
on §is shown in Fig. 1(a) (line 2). Lines 2 and 3 in
Fig. 1(b) show how the FWHM of I;(5) varies with the
gain parameter a for two different propagation dis-
tances. One can see that the spectrum quickly nar-
rows as the gain is increased but kept below the
threshold (e < ay,;,). Close to and above the threshold
the narrowing continues but at a much slower pace.
With the increase of the propagation distance and for
the fixed gain, the spectrum also narrows [cf. lines 2
and 3 in Fig. 1(b)], since the spectral components of
SPP modes near the line center are stronger ampli-
fied and hence become dominant.

The influence of nonlinear effects on the SPP
propagation constant can be derived by solving Eq.
(9) with respect to 8 and demanding Im 3=0. We as-
sume that the right-hand side of Eq. (9) can be
treated as a perturbation and find the following:
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Fig. 1. (Color online) (a) Normalized SPP intensity as a

function of detuning 8. Line 1 is the spectrum of stationary
(saturated) SPP, I(8): a=1.1ay;,. Line 2 is the spectrum of
the amplified linear SPP, I;(5), below the threshold (propa-
gation distance 60 pm, @=0.8ay,;,). (b) FWHM of the SPP
spectra versus gain. Line 1 is for the stationary saturated
SPPs, I,. Lines 2 (propagation distance 60 um) and 3 (dis-
tance 100 um) are for the nonstationary linear SPPs, I;.
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B= B+ BulAP,  Bu= (10)

where q, ,, inside B,; are calculated for 8=p4;. Above
the threshold (a> ay;,), the linear growth of the SPP
intensity is saturated by the nonlinear absorption,
and as a result the intensity quickly attains a sta-
tionary value. To calculate the spectral and other
characteristics of the stationary (saturated) SPPs, we
use Eq. (10) and impose the condition Im B8=0.

In the linear approximation, Im ;=0 implies «
=aq (see above) and the corresponding real propaga-
tion constant is B;(ag) = By. Expanding B in Eq. (10)
into the Taylor series in (a-qg), i.e., close to the
threshold for a given &, we find B=gy+(a—®y)d, B
+B,|A%. Then Im B=0 gives the intensity I,=|A,[? of
the stationary SPPs:

Is = (a’ - aO)Im &aﬁl/(_ Im ﬂnl)7 (11)
where 4,8, and B,; are calculated for a=«,. Figure 2
shows dependencies of I on gain for several values of
S. Naturally, one can see that for higher gain, SPPs
within the wider frequency interval around the reso-
nance cross the threshold, leading to the gradual
broadening of the spectra of the stationary SPPs [see
line 1 in Fig. 1(b)].

Figure 1(a) compares the spectral intensity profiles
of the linear SPPs below threshold and of the nonlin-
ear saturated ones above the thresholds. Also, Fig.
1(b) compares the linewidth of these two SPP fami-
lies. One can see that the spectra of stationary SPPs
above the threshold are much narrower for small de-
viations from a,;, than spectra of the linear SPPs.
For propagation distances of few gain lengths
(kIm B)! (e.g., 100 um) we shall expect that the
SPPs should achieve their stationary saturated in-
tensities. Therefore, the threshold crossover, if ob-
served at sufficiently long distances, should be ac-
companied by a marked spectral narrowing, which
has indeed been reported in the recent experiments
[7]. Note the obvious qualitative agreement between
our Figs. 1(a) and 2, and the experimental Figs. 2(a)
and 2(b) in [7].
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Fig. 2. (Color online) Dependence of the intensity of the
stationary SPPs above the threshold on the gain parameter
a/ apin. Line 1 corresponds to 6=0, line 2 corresponds to
6=0.4, and line 3 corresponds to §=0.8.
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Fig. 3. (Color online) Dependence of the (a) real and (b)

imaginary parts of the SPP propagation constants on the
gain parameter for §=0. Solid lines correspond to the sta-
tionary nonlinear SPPs (B;), and the dashed lines corre-
spond to the linear SPPs (8)).

For the propagation constant of the stationary
saturated SPPs we thus have B,=py+(a—ay)Re 4,6
+I,Re B,;. Figure 3 compares real and imaginary
parts of the above B; with B;. It shows that there ex-
ists a marked difference of the dependencies of the
propagation constant from the gain parameter in the
linear and nonlinear cases. We have independently
cross-checked the SPP profiles and propagation con-
stants using the numerical shooting method applied
directly to the Maxwell equations. Good agreement
between analytical and numerical results for «
<2ayp,;, made it unnecessary to present the numeri-
cal results in the context of this Letter.

In summary, we have presented a theory of SPP
amplification in the presence of nonlinear gain satu-
ration as it happens in the real-world systems. We
have calculated saturated intensities of SPPs above
the amplification threshold and quantitatively de-
scribed transition from the broad Lorentzian spectra
of the nonstationary amplified SPPs to the narrow
spectra of the stationary saturated SPPs above the
threshold.
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