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We present a comprehensive numerical analysis of the guiding of a photonic signal in the form of a strongly con-
fined asymmetric surface plasmon polariton (SPP) mode along metallic nanowire waveguides. The proposed
approach provides extremely high localization of the SPP mode, nanoscale integration density, and a feasible tech-
nological platform. The waveguide performance was studied over a broad range of subwavelength cross sections at a
telecommunication wavelength. It was optimized using a conventional figure of merit for data transfer along a
straight waveguide and an all-inclusive figure of merit has been introduced. © 2011 Optical Society of America
OCIS codes: 130.0130, 250.5403.

Surface plasmon polaritons (SPPs) offer a unique oppor-
tunity to localize and guide photonic signals on the na-
noscale. Recently, truly nanoscale guiding along the
gap, nanoparticle chain, dielectric-loaded, or circular na-
nowire plasmonic waveguides have been demonstrated
[1–3]. In this Letter, we investigate guiding a photonic sig-
nal in the form of an asymmetric SPP mode along a
nanoscale metallic wire waveguides with multifarious
rectangular cross sections. This approach can provide
extremely high field localization and nanoscale integra-
tion density along with a feasible technological platform
which allows the incorporation of signal amplification.
These are key advantages in comparison with the other
types of SPP waveguides. The incorporation of such
broadband photonic waveguides into electronic circuits
opens a prospective solution to the problem of electronic
interconnect bottleneck, leading to the realization of
hybrid electronic/photonic circuits.
The asymmetric plasmonic mode in a metallic wire

waveguide (Fig. 1) [3,4], in contrast its symmetric
long-range large-size counterpart [5], has not been inten-
sively studied until very recently, when an approach
for its efficient excitation was found [6]. This mode is
extremely promising in terms of achieving strong field
localization and high-density photonic integration.
Furthermore, it does not have a cutoff in terms of the
waveguide cross section and the smaller the waveguide
size, the higher the localization of the mode—exactly
what is needed to achieve nanoscale integration density.
However, as usual for SPP modes, there is a trade-off
between localization and propagation characteristics,
depending in this case on the waveguide geometrical
parameters. This leads to the question of what is the best
waveguide cross section for specific nanophotonic appli-
cations. In this Letter, the guiding properties of such
waveguides have been investigated over a wide range
of subwavelength cross sections to determine both the
optimal parameters for data transfer through a straight
waveguide and separately, for multibranched SPP
circuits.
We have studied nanowire waveguides having a rec-

tangular cross section embedded in an InGaAsP-based

medium [Fig. 1(a)]. The wavelength was chosen as λ ¼
1550 nm to target the possible application of the wave-
guides in telecommunications. The choice of noble metal
insures longer propagation distance, while an appropri-
ate choice of dielectric enables the introduction of gain,
compensating the losses in metal and increasing the SPP
signal propagation length [7]. The refractive indices
for gold (n1 ¼ 0:55 − 11:5i) and InGaAsP (n2 ¼ 3:37)
were taken from [8] and [9], respectively. We performed
two-dimensional eigenmode numerical simulations of
the system using COMSOL Multiphysics software.
Special care was made for proper meshing (2:5nm mesh
in the waveguide core area, 37:5 nm in the coating), suf-
ficient distance to the outer domain boundaries (5 μm),
and dense enough mode mapping to ensure correct
simulation of the mode and correct calculation of its
parameters. Numerical simulations reveal that for the
dimensions of interest in this work, the waveguide is a
single mode for modes with an asymmetric field distribu-
tion. The supported asymmetric mode is localized in a
region of a few tens of nanometers next to the waveguide
surface [Fig. 1(a)]. Its electric field is directed radially
from (or to, half an optical cycle later) the center of
the waveguide.

The mode behavior has been investigated for a wide
range of waveguide cross sections, with particular em-
phasis on ultrasubwavelength dimensions, down to a
25 nm × 25 nm size. The width of the waveguide, w, and
height, h, were continually varied, while the main mode
characteristics: effective refractive index neff , effective
mode area Seff , and propagation length Lprop were
monitored. The mode effective refractive index was de-
fined as neff ¼ kmode

SPP =k, where k ¼ 2π=λ is the free space
wave vector. The effective area was defined as an
area inside the constant magnitude contour, encircling
(1 − 3e−2) part (around 60%) of the total intensity integral
in the dielectric, plus the area of the metal section sup-
porting it (see the inset to [Fig. 1(b)]) [9]. This part of the
energy is encircled by the 1=e field decay contour in the
case of the Gaussian mode distribution. Here we used an
integral (in contrast to a magnitude as in [10]) condition
for the level defining the contour, because with various
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waveguide cross sections, various mode profiles should
be expected. According to the investigation specifically
devoted to various methods of estimating the effective
area of the plasmonic modes [11], this approach is
the most reliable for application to different plas-
monic waveguides. The propagation length Lprop ¼
λ=ð4πImðneffÞÞ was defined as the distance at which
the energy of the mode decreases by a factor of e. The
corners of the waveguide were rounded with a radius
of r ¼ 5nm to avoid field singularities and also due to
the fact that this is usually the case in practice.
The behavior of the asymmetric mode is totally oppo-

site to that of the symmetric one described in [9]. The
smaller waveguide size corresponds to the higher effec-
tive refractive index [Fig. 1(b)] and the greater mode
localization [Fig. 1(c)]. For waveguides with lateral
dimensions around 25 nm, the real part of the effective
refractive index reaches values higher than 7.5, which
makes these waveguides very promising in terms of
photonic circuit integration. Such a large effective index
lowers the minimum bending radius achievable before
the mode couples to photons at the outer edge of the
bend. Furthermore, power flow is localized just 15 nm
from the waveguide surface (corresponding to the mode
size of 50 nm). The typical power flow map for the case of
a 50 nm × 50 nm waveguide is presented in Fig. 1(a). As
usual, there is a trade-off between its localization and
propagation characteristics. In modes of a smaller size,
the electromagnetic fields are pushed into the metal,
which increases the ohmic losses and decreases the pro-
pagation length below 1 μm. The same highly localized
behavior is observed when either side of the waveguide
is in the region of 25–50 nm, although the two regions of
mode localization are then well separated [Fig. 2(a)]. At
the other side of the waveguide sizes w ∼ h ∼ 450 nm, the
mode becomes decomposed into a set of practically iso-
lated wedge SPP modes with Lprop ¼ 3:6 μm. As expected
from the mode symmetry, all of the graphs are symmetric
with respect to the diagonal w ¼ h axis. Finally, it was
found that the group velocity dispersion (GVD) for the
smallest waveguide (25 nm × 25 nm) is ∼0:1ps2=mm,
making the waveguides practically nondispersive at
the operation length scale.
To find an optimal waveguide cross section in terms of

mode localization/propagation trade-off in the case of
guiding along a straight waveguide, a figure of merit
M1 ¼ 2

ffiffiffiπp
Lprop=

ffiffiffi

S
p

[10] has been implemented. M1 is
a straightforward ratio between the propagation length

Lprop, reflecting the propagation characteristic of the
mode and the size of the mode

ffiffiffi

S
p

, reflecting its localiza-
tion. The parametric plot of the figure of merit reveals
that there is a clear optimum of the waveguide perfor-
mance at a size of 125 nm × 125 nm [Fig. 2(b)]. The
two maximum regions at higher values of width or height
are less interesting, since having the same value of M1,
they correspond to weaker localization, the key advan-
tage of this SPP mode. If active functionalities based
on the coating medium are not needed, then low refrac-
tive index coating (e.g., silica or polymer) is advanta-
geous. For example, a 68 nm × 68 nm silica-coated
waveguide with the same mode area (0:026 μm2) as a
125 nm × 125 nm InGaAsP-coated waveguide has a 2.5
times larger propagation length. The M1 in this case re-
presents a plateau at the level of 130 at w; h > 100 nm,
decreasing with a sharp gradient towards 90 at the axis
w ¼ 25 nm and h ¼ 25 nm. Careful comparison of the
modes will be reported elsewhere.

The effective mode size included in M1 gives valid es-
timation about the possible integration density. At the
same time, the exact answer will only be given by a direct
evaluation of the cross talk between the waveguides. Fol-
lowing [2], the figure of merit was modified such that
M�

1 ¼ Lprop=d, where d is the waveguide center-to-center
separation required for a certain coupling length Lcoupl,
corresponding to the distance at which the mode initially
launched in one waveguide is fully transferred to another
one, and placed parallel to it (25% of the mode energy is
transferred after Lcoupl=3). It was calculated from the
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Fig. 2. (Color online) (a) Maps of power flow along the wave-
guide for 25nm × 25nm, 450 nm × 25nm, and 450nm × 450nm
waveguides. (b) Figure of merit M1 as a function of waveguide
geometrical parameters.
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Fig. 1. (Color online) (a) Field map of power flow Pz of the asymmetric SPPmode at λ ¼ 1550nm, supported by a 50nm × 50nm Au
waveguide embedded in InGaAsP. The dependences of the (b) real part of the mode effective refractive index, (c) effective mode
area, and (d) propagation length of the mode on waveguide geometrical parameters.
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difference between the effective refractive indexes of
the symmetric and asymmetric modes found in two-
dimensional eigenmode simulations of the coupled
double-waveguide system. The dependence of M�

1 on the
waveguide size for the waveguides of a square cross sec-
tion is presented in Fig. 3 for various values of Lcoupl.
Initially, the modified figures of merit increase with
waveguide size, but then at s ∼ 125 nm they reach their
maximal values. Notably, for square waveguides the qua-
litative behavior of M�

1 is rather independent of the
particular choice of Lcoupl.
The performance of the waveguide was further inves-

tigated in terms of its implementation in multibranched
plasmonic circuits. The efficiency of the waveguide bend
is important in this case, since this ultimately defines the
size of all circuit elements and therefore the possible
photonic integration density. To estimate this, sets of
full-vectorial three-dimensional (3D) numerical simula-
tions were performed for the waveguides with square
cross sections [indicated by a dashed line in Fig. 2(b)].
For each cross section, a 90° waveguide bend was simu-
lated, continually varying the bending radius (the radius
of the waveguide central axis) and monitoring the SPP
transmission. Plotted in Fig. 3 is a modified figure of
merit M3D

1 ¼ Lprop=d · ðT=rÞmax adapted from [2], where
ðT=rÞmax is the maximum value of transmission-to-radius
ratio found in 3D simulations and d is the separation
corresponding to Lcoupl ¼ 25 μm calculated before.

Transmission T was calculated as a ratio of mode ener-
gies just before and just after the bend (positions 1 and 2
in Fig. 3, inset). The maximum in the total efficiency is
observed at smaller cross sections s < 50 nm, having
higher mode effective refractive indices; this follows as
expected from our previous discussion. Moreover, for
them the highest transmission (reaching T ¼ 0:8–0:9
for s ¼ 25–40 nm) occurs when the bending radius is
equal to half of the waveguide width, corresponding to
the case of a zero radius inner edge (see inset to Fig. 3,
solid black shape). This behavior of the figure of merit is
essentially important, since in many cases smaller
waveguide cross sections correspond to the lower inte-
gration characteristics due to the increased mode area.
Finally, we note that it is even possible to bend a wave-
guide with a sharp-corner bend (see inset, dashed line),
for a 25 nm × 25 nm waveguide the transmission is
T ¼ 0:74.

In conclusion, we have performed a comprehensive
numerical analysis of the guiding of a photonic signal
in the form of an asymmetric SPP mode along metallic
nanowire waveguides. The performance of the wave-
guide was investigated for a whole range of ultrasub-
wavelength waveguide cross sections, monitoring all the
mode guiding characteristics. The best waveguide cross
section in terms of the mode localization/propagation
trade-off was found to be 125 nm × 125 nm. Furthermore,
introducing an all-inclusive figure of merit, the high po-
tential of these low GVD waveguides for implementation
in highly integrated photonic circuits has been revealed.

This work was supported by the UK Engineering and
Physical Sciences Research Council (EPSRC).
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Fig. 3. (Color online) Modified figures of merit M3D
1 (solid

black curve) and M�
1 (defined for Lcoupl ¼ 5 μm dashed black

curve, Lcoupl ¼ 10 μm dashed blue curve, Lcoupl ¼ 25 μm dashed
green curve, Lcoupl ¼ 250 μm dashed red curve) as functions of
waveguide size s for waveguides of a square cross section. The
top insets show the jReðEyÞj map of the mode transmission
through a bend along with the vertical cross section of a wave-
guide and a horizontal cross section of the bend.
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