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Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation
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The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a
simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity.
The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the
presence of material interfaces in the case of small metal particles. The coupling between fundamental and
second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between
polarization dipole density of the second-harmonic mode and the square of the polarization charge density
of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into
dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities
are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of
the effect.
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I. INTRODUCTION

Nonlinear optics has triggered the evolution of modern
optics, yielding discoveries of important phenomena, deep
understandings of fundamental optical effects and, moreover,
serving as a source for a large variety of applications. Nonlinear
optical interactions are relatively weak but can be significantly
enhanced using various approaches. Generally, nonlinear
optical phenomena are proportional to higher orders of the
driving field, motivating the quest for local electromagnetic
field enhancement for which various nanostructures have
been proven to be beneficial. In particular, noble metals with
negative permittivity at optical and infrared wavelengths can
support the so-called surface plasmon modes with the deep-
subwavelength localization of the electromagnetic energy,
overcoming the conventional diffraction limit and leading to
the field enhancement effects.1 Plasmonic nanostructures are
perfect candidates for the realization of various concepts for the
enhancement of nonlinear effects. Surface-enhanced Raman
scattering (SERS) is one of the most famous examples of
plasmonic-enhanced processes: a rough noble metal surface
was shown to enhance the magnitude of the scattering by 14
orders of magnitude compared to the conventional process.2

The advantage of doubly resonant plasmonic structures was
demonstrated for SERS where a pair of particles provides
the resonant enhancement for both the pump and Stokes
frequencies.3 The grooves etched in a metal surface and
organized into a grating geometry have been shown to enhance
the four-wave mixing (FWM) efficiency by two orders of
magnitude.4 Four orders of magnitude improvement of FWM
was demonstrated with a plasmonic dimer configuration.5

Optical nonlinearities assisted by plasmonic nanostructures
have recently been proposed for various applications in active
photonic components,6 sensing,7 and signal processing.8

Second-harmonic generation (SHG) is the most basic
nonlinear process in which two photons combine to create
a photon at double frequency. There are many literature

reports on the study of various SHG-based plasmonic devices.
For instance, core-shell nanocavities have been shown to
enhance the nonlinear SHG conversion in a nonlinear core
by two to three orders of magnitude.9 Nanorings of GaAs
incorporated in a gold film have been shown to enhance
the SHG in the wavelength range corresponding to the
enhanced transmission of the film.10 Dark plasmonic modes
(weakly coupled to far-field radiation) may be excited via
second-harmonic generation.11 SHG from small metal clusters
and rough surfaces was investigated in Ref. 12, although
the multiple resonant structure was ignored. In the previous
studies, nonlinear interactions were considered to originate
from either nonlinear dielectric materials and then be enhanced
by the metal structures or bulk and surface metal nonlinearities,
which are not always straightforward to distinguish.13

Furthermore, nanoscale nonlinear processes are essentially
different from conventional nonlinear phenomena.14 One of
the fundamental requirements of the “propagating-wave” non-
linear optics is the fulfillment of phase-matching conditions:
fundamental and second-harmonic waves have to propagate
in phase in order to create constructive interferences and,
thus, considerably increase the efficiency of the conversion
process.15 The possibility of fabricating small photonic cavi-
ties initiated the studies of cavity nonlinear optics where the
classical phase-matching conditions are replaced by a spatial
overlap of localized modes at fundamental and second har-
monic frequencies in order to obtain an enhanced conversion
efficiency.16 Hence, investigations of nontrivial conditions
for optimized nonlinear interactions in subwavelength plas-
monic objects are of potential fundamental and applicative
interest.

In this paper we develop the theoretical description of
nonlinear interactions, in particular, SHG, in the nanoplas-
monic environment taking into account intrinsic free-electron
nonlinearity of metals. The role of the boundaries of nanos-
tructures has been elucidated to play the key role in nonlinear
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interactions. We have investigated the dynamics of nonlinearly
coupled plasmonic modes in metal nanoparticles. The source
of nonlinearity is the metal itself while the surrounding
environment is assumed to be linear. We show that the
most significant contribution to SHG originates from abrupt
boundaries, while other bulk nonlinearity mechanisms are less
important in the nanoplasmonic deep-subwavelength regime.
The overlap integral (“cavity phase-matching condition”)16 is
replaced by a boundary integration which provide a quanti-
tative measure of the matching of the surface charge density
(at fundamental wavelength) with the induced surface dipole
density (at second-harmonic wavelength) to produce localized
surface plasmon phase-matching condition, as will be further
explained below. The distinctive result of our derivation is
that the SHG efficiency is proportional to the ratio of surface
area to volume, emphasizing the significant benefit of nanos-
tructuring. Previously, size-dependent effects and polarization
selection rules for SHG were studied for Rayleigh spheres
made of centrosymmetric material.17 Note also that nonlocal
effects due to the strong electron confinement in plasmonic
nanoparticles may lead to other nontrivial size-dependent
effects.18

II. THEORETICAL FORMULATION

Hydrodynamic equations provide satisfactory description
of electrons’ dynamics in the conduction band of noble metals,
such as silver and gold. In fact, hydrodynamic treatment
was first used by Ritchie in his seminal work,19 where he
predicted the existence of surface plasmons. Traditionally,
material susceptibilities, linear as well as nonlinear, are derived
with the help of averaged quantities—electron density (n =
n0 + n1e

−iωt + n2e
−2iωt + · · ·) and average velocity (v =

v1e
−iωt + v2e

−2iωt + · · ·). The basic result for linear response
is the well-known Drude model, which fits experimental
data considerably well away from the plasma frequency and
interband transitions. Additional higher-order corrections and
introduction of additional terms, such as quantum pressure
of electron gas and viscosity, may lead to spatial dispersion
contributions and temperature dependence of the appropriate
optical constants (Ref. 20 and references therein and citing
articles). Introduction of the conservative ponderomotive
potentials may lead to third-order plasmalike nonlinearities
of electron gas.21 Careful inclusion of losses and interband
transitions in the frame of the hydrodynamic model provides
more detailed, but complex formulation.22 However, the basic
result of the Sommerfeld free-electron model extension for
nonlinear polarizability

−→
P

(2)
(ω,ω) is based on the derivations

of Bloembergen et al.,23 which is the core of other advanced
models.

Expanding the electromagnetic fields in terms of ba-
sic and higher harmonics

−→
E = −→

E1e
−iωt + −→

E2e
−2iωt + · · ·,−→

H = −→
H1e

−iωt + −→
H2e

−2iωt + · · · and substituting them into
hydrodynamic equations ∂v

∂t
+ v · ∇v = − e

m
(
−→
E + −→v × −→

H ),

∇ · −→
E = − 1

ε
e(n − n0), ∂n

∂t
= −∇ · (n−→v ), and

−→
J = −en−→v ,

where
−→
J is the current density, related to the polarization,

the following expression for nonlinear polarizability may be

obtained:23

−→
P

(2)
(ω,ω) = −

(ωp

2ω

)2
εb

−→
E2 + i

eεbω
2
p

4mω3

−→
E1 × −→

H1

+ eεbω
2
p

4mω4
(
−→
E1 · �∇)

−→
E1 + eεb

2mω2
(∇ · −→

E1)
−→
E1, (1)

where ω2
p = n0e

2

mεb
is the electron plasma frequency, ω is the

angular frequency of the field, n0 is the concentration of the
unperturbed electrons, m is the electron effective mass, and
εb is the background permittivity. Taking the divergence of
Eq. (1), we obtain the nonlinear polarization charge density,
acting as the source for second harmonic field. Neglecting
higher-order spatial derivatives of the fields within a particle
and taking into account that the rotor of the electrical field
vanishes under the quasistatic approximation, the second-order
nonlinear polarization charge density can be represented as
follows:

ρ
(2ω)
NL = − eεb

2mω2

(
ω2

p

2ω2
+ 1

)
(∇ · −→

E1)2. (2)

Note that the divergence of electrical field is the only
nonvanishing term on the boundaries, it corresponds to the
surface charge density. This nonlinear charge serves as the
source of the second-harmonic field.

As the next step, we derive the set of coupled-mode
equations, representing the electromagnetic fields via the eign-
modes of plasmonic resonances. We start from the nonlinear
wave equation (neglecting material dispersion around the oper-
ation frequency) ∇ × ∇ × −→

E = −μ0ε(�r)∂tt
−→
E − μ0∂tt

−→
PNL,

where ε(�r) is the spatial-dependent permittivity,
−→
PNL is

nonlinear polarizability, and ∂tt is the second-order time
derivative. We expand the electromagnetic fields obeying
Maxwell’s equations in a virtual cavity using following cavity
modes:

−→
Ek = Ak(t)e−iωkt e−γk (ωk)t−→Fk(r), (3)

where Ak(t) is the slowly varying mode amplitude, ωk and
γk(ωk) are its frequency and frequency-dependent exponential
damping,24 respectively, and

−→
Fk(r) is the normalized spatial

mode distribution. Assuming the excitation source to be a
localized surface plasmon mode

−→
F

(ω)
1 (�r) at the fundamental

frequency ω (for example, a far-field illumination will excite
modes with most pronounced dipole moments25), we obtain

−→
ESH =

∑
k

A
(2ω)
k (t)e−2iωt e−γk (ωk)t−→F (2ω)

k (r),

(4)
∇ × ∇ × −→

ESH = −μ0ε(�r,2ω)∂tt
−→
ESH − μ0∂tt

−→
PNL.

Applying the “slowly varying amplitude” (temporal de-

pendence) approximation, which satisfy ∇ × ∇ × −→
F

(2ω)
k =

−μ0ε(�r,2ω)[2iω + γk(ω)]2−→F (2ω)
k , and taking the divergence
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of both sides of the Eq. (4) (ρNL = −∇ · −→
PNL) we obtain

2εparticle(2ω)
∑

k

(2iω + γk(2ω))
dA

(2ω)
k (t)

dt
∇

·−→F (2ω)
k e−2iωt e−γk (2ω)t

= −2eεb

mω2

(
ω2

p

2ω2
+ 1

)
(iω + γ1(ω))2(A(ω)

1

)2

× (∇ · −→
F

(ω)
1

)2
e−2iωt e−2γ1(ω)t . (5)

Substituting εparticle(2ω) = εb[1 − (ωp

2ω
)2] and assuming that

(i) the frequencies of interest are smaller than the plasma
frequency and (ii) negligible influence of mode losses on
nonexponential coefficients in Eq. (5), we obtained∑

k

dA
(2ω)
k (t)

dt
∇ · −→

F
(2ω)

k

≈ i
e

mω

(
A

(ω)
1

)2(∇ · −→
F

(ω)
1

)2
e(γ (2ω)

k −2γ
(ω)
1 )t . (6)

Equation (6) may be reformulated in terms of surface charge
densities. For this purpose we utilize the integral relation
between surface charge density, which is an eigenvector of
the certain Fredholm integral equation, while the localized
surface plasmon frequency is defined from its eigenvalue. The
corresponding boundary integral approach, defined in Ref. 26,
leads to

σ (Q) = 1

2π

ε(ω) − 1

ε(ω) + 1

∮
σ (M)

−→rMQn̂Q

|−→rMQ|3 dSM, (7)

where σ (Q) is the surface charge density at point Q, ε(ω) is
the particle’s dispersive dielectric constant, −→rMQ is the vector
connecting two points on the particle boundaries—any point
(M) with a point of observation (Q), n̂Q is the normal to the
boundary at the point Q, while the integration is performed
along the particle boundary. It may be shown that {σk}∞k=1 and
{τk}∞k=1 form a biorthogonal set of functions on the particle’s
boundary and

∮
τk(Q)σm(Q)dSQ = δk,m, where τk(Q) is the

solution of the conjugated kernel of the Fredholm equation of
the second kind; τk has a meaning of surface dipole density.26

Several examples of the related quantities are given in Fig. 1.
Finally, projecting Eq. (5) on the proper conjugated surface

function, and taking into account that ∇ ·−→F is proportional
to the surface charge density times the two-dimensional delta
function at the particle’s boundary, we may obtain the evolution
of any particular second-harmonic resonance:

dA
(2ω)
k (t)

dt
= − ie

mωε0

{∮
τ

(2ω)
k (Q)

[
σ

(ω)
1 (Q)

]2
dSQ∮

τ
(2ω)
k (Q)σ (2ω)

k (Q)dSQ

}

× e(γ (2ω)
k −2γ

(ω)
1 )t S

V

(
A

(ω)
1

)2
, (8)

where S is the surface area of a particle and V is its volume. The
maximal efficiency of the excitation will occur for the mode
which maximizes the overlap integral in the curly brackets
in Eq. (8). Moreover, the multiplication factor of S/V shows
explicitly the proportionality to the ratio of the surface area to
the particle volume. Note that the nonlinear interaction here

FIG. 1. (Color online) Distribution of surface charge density
(left column) and the related surface dipole density (right column)
for different plasmonic resonances of the spheroidal particle with
the aspect ratio 1:1:1.6. (a), (b) Z-polarized dipole resonance; (c),
(d) X-polarized dipole resonance; (e), (f) Z-polarized quadrupole
resonance.

has purely surface origin, supporting the experimental results,
reported in Ref. 27.

The conversion efficiency of the nonlinear optical processes
is usually linked to the local field enhancement since nonlinear
polarizabilities are proportional to a certain power of the field.
Here, a similar link can be made—high surface charge/dipole
density leads to high local electric fields. The “matching” inte-
gral of Eq. (8) may reach high values if these surface functions
are spatially overlapped, meaning that the corresponding local
fields of first and second harmonics have a significant overlap
also. In particular, noncentrosymmetric particles can generate
the second harmonic more efficiently. All the geometrical
properties of particles are taken into account in the solution of
Eq. (7) and proper matching of parameters can maximize the
spatial overlap integral in Eq. (8), resulting in more efficient
SHG.

III. SIMULATION RESULTS

To achieve efficient SHG into certain localized plasmon
modes, a plasmonic particle should have resonances at both
fundamental and second-harmonic frequencies Eq. (8). We ap-
ply our approach to the most straightforward case—single iso-
lated spheroid particles in the free space, investigating the in-
terplay between its different plasmonic resonances. The prob-
lem of finding localized surface plasmon resonances [Eq. (7)]
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FIG. 2. (Color online) Tuning the localized surface plasmon res-
onances of the spheroidal particle. (a) Permittivity corresponding to
Z-polarized dipole resonance as the function of particles’ dimensions.
(b) Permittivity corresponding to Z-polarized quadrupole resonance
as a function of particles’ dimensions. (c) Resonant wavelength
(normalized to λp = 2πc/ωp , where ωp is the plasma frequency) of
dipole (red solid line) and quadrupole (blue dashed line) modes as the
function of c/a parameter, while b/a = 0.6 is kept constant. Right
insets represent surface charge densities for corresponding modes.
Black vertical dotted line indicates the set of parameters for which the
quadrupole and dipole modes’ frequencies are matched for the SHG
process. The insert in top-left part depicts the geometry of the system.

has purely geometrical formulation of determining the set of
its eigenvalues αn: σ (Q) = αn

∮
σ (M)−→rMQn̂Q/|−→rMQ|3dSM .

Then, the actual resonant frequencies can be calculated using

the corresponding equation 1/(2π )(ε(ωn) − 1)/(ε(ωn) + 1) =
αn, defined by the actual material dispersion ε(ω).
Implementing the “week form” technique in the finite-element
method for solution of Eq. (7) and its conjugate, it is possible
to obtain spatial distribution of surface charge and dipole
densities.28

We consider the localized plasmon resonance at the fun-
damental frequency to be dipolar, since it has the highest
probability to be excited with far-field excitation; however,
higher-order resonances may also be considered. The surface
charge density of this dipole resonance for an arbitrary
spheroid is depicted in Fig. 1(a) and its square acts as a second-
harmonic source. Figures 1(d) and 1(f) show the surface
dipole densities for the second-harmonic dipole associated
with another spheroid axis perpendicular to the fundamental
dipolar mode and quadrupolar mode, respectively. Equation
(8) predicts the vanishing excitation efficiency for the per-
pendicular second-harmonic dipole mode, since the surface
integral of τ

(2ω)
k (σ (ω)

1 )2 is zero. At the same time, for the
quadrupole mode this overlap is nonzero, meaning that it may
indeed be excited if its resonance frequency is twice that of
the fundamental dipolar mode.

The problem now is to match the localized surface plasmon
modes at fundamental and second-harmonic wavelengths. Two
independent geometrical degrees of freedom (semiaxes of the
spheroid) provide sufficient tuning abilities for this case study.
Recently, it was shown that higher-order modes (quadrupoles29

and octupoles30) can significantly contribute to the emission
pattern of second-harmonic light. Spheroids have full analyt-
ical solutions for oblate/prolate spheroid dipole moments31

even for higher-order modes.32 Moreover, spheroids have
a full analytical solution for the scattering problem, giv-
ing scattered field patterns and polarization-dependent cross
sections.33

Figures 2(a) and 2(b) present the parametric plot of dipolar
and quadrupolar LSPs, respectively, on the permittivity of the
metal particle. The resonant frequencies were obtained using
the Drude model and were plotted as the function of c/a,
while b/a = 0.6 is kept constant [Fig. 2(c)]; the corresponding
dimensions are defined in the left inset in the figure. It
can be found that the resonant wavelengths of the dipolar
and quadrupolar localized plasmon modes differ by factor
of 2 at c = 2.25a [Fig. 2(c)]. Thus, the frequency-matching
conditions are satisfied for these modes. These parameters
lead to the value of ∼0.8 of the overlap integral [Eq. (8)]. Even
higher conversion efficiencies may be achieved by additional
optimizations and explorations of other geometrical shapes.
Different types of resonance tuning relying on geometrical
variations exist including “hybridization”34 and “concavity”35

techniques. Moreover, it has been recently demonstrated that
several plasmonic resonances may be simultaneously tuned
by employing “evolutionary” algorithms;36 a number of other
possibilities are discussed in Ref. 37. Similar approaches may
be employed for additional optimization over the overlap
integrals.

IV. CONCLUSION

SHG in small metal particles was investigated from first
principles. In the deep-subwavelength regime the main source
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of nonlinearity was shown to originate from the particles’
boundaries. The conversion efficiency was shown to be
proportional to the ratio of the surface area to the volume of the
particle, supporting the significance of the nanoscale objects
for nonlinear optical processes. Particles with high spatial
symmetry will allow nonlinear conversion only between
localized plasmon modes with the same symmetry properties.
For example, a far-field illumination of spheroid particles will
convert the energy into dark nonradiating second-harmonic
modes, such as quadrupoles, however, dipole-to-dipole non-

linear coupling may be realized with particles with a lack of
symmetry.
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8K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev,
Nat. Photonics 3, 55 (2009).

9Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, Phys. Rev. Lett. 104,
207402 (2010).

10W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M.
Osgood, K. J. Malloy, and S. R. J. Brueck, Nano Lett. 6, 1027
(2006).

11C. G. Biris and N. C. Panoiu, Nanotechnology 22, 235502 (2011).
12M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and

J. Zyss, Phys. Rev. Lett. 92, 057402 (2004).
13F. X. Wang, F. J. Rodrı́guez, W. M. Albers, R. Ahorinta, J. E. Sipe,

and M. Kauranen, Phys. Rev. B 80, 233402 (2009).
14I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Phys. Rev. B 56,

9290 (1997).
15R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Amster-

dam, 2008).
16A. Hayat and M. Orenstein, Opt. Lett. 32, 2864 (2007).
17J. I. Dadap, J. Shan, and T. F. Heinz, J. Opt. Soc. Am. B 21, 1328

(2004).
18O. A. Aktsipetrov, A. A. Fedyanin, E. D. Mishina, A. A. Nikulin,

A. N. Rubtsov, C. W. van Hasselt, M. A. C. Devillers, and Th.
Rasing, Phys. Rev. Lett. 78, 46 (1997).

19R. H. Ritchie, Phys. Rev. 106, 874 (1957).
20J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, Phys. Rev. B

21, 4389 (1980).
21P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, Opt. Lett.

35, 1551 (2010).
22M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini,

N. Akozbek, and M. J. Bloemer, Phys. Rev. A 82, 043828 (2010).
23N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev.

174, 813 (1968).
24P. Ginzburg and A. V. Zayats, Opt. Express 20, 6720 (2012).
25I. D. Mayergoyz, Z. Zhang, and G. Miano, Phys. Rev. Lett. 98,

147401 (2007).
26I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, Phys. Rev. B 72,

155412 (2005).
27J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin,

and P. F. Brevet, Phys. Rev. B 71, 165407 (2005).
28[http://www.comsol.com/].
29I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P.-F.

Brevet, J. Phys. Chem. C 111, 9044 (2007).
30J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou,

and P. F. Brevet, Phys. Rev. Lett. 105, 077401 (2010).
31C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light

by Small Particles (Wiley-Interscience, New York, 1983).
32D. V. Guzatov, V. V. Klimov, and M. Yu. Pikhota, Laser Phys. 20,

85 (2010).
33S. Asano and G. Yamamoto, Appl. Opt. 14, 29 (1975).
34E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302,

419 (2003).
35N. Berkovitch, P. Ginzburg, and M. Orenstein, Nano Lett. 10, 1405

(2010).
36P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein,

Nano Lett. 11, 2329 (2011).
37N. Berkovitch, P. Ginzburg, and M. Orenstein, J. Phys.: Condens.

Matter 24, 073202 (2012).

085422-5

http://dx.doi.org/10.1126/science.275.5303.1102
http://dx.doi.org/10.1021/nn102726j
http://dx.doi.org/10.1021/nl102747v
http://dx.doi.org/10.1103/PhysRevLett.98.026104
http://dx.doi.org/10.1021/nl200255t
http://dx.doi.org/10.1038/nmat2162
http://dx.doi.org/10.1038/nphoton.2008.249
http://dx.doi.org/10.1103/PhysRevLett.104.207402
http://dx.doi.org/10.1103/PhysRevLett.104.207402
http://dx.doi.org/10.1021/nl0604457
http://dx.doi.org/10.1021/nl0604457
http://dx.doi.org/10.1088/0957-4484/22/23/235502
http://dx.doi.org/10.1103/PhysRevLett.92.057402
http://dx.doi.org/10.1103/PhysRevB.80.233402
http://dx.doi.org/10.1103/PhysRevB.56.9290
http://dx.doi.org/10.1103/PhysRevB.56.9290
http://dx.doi.org/10.1364/OL.32.002864
http://dx.doi.org/10.1364/JOSAB.21.001328
http://dx.doi.org/10.1364/JOSAB.21.001328
http://dx.doi.org/10.1103/PhysRevLett.78.46
http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1103/PhysRevB.21.4389
http://dx.doi.org/10.1103/PhysRevB.21.4389
http://dx.doi.org/10.1364/OL.35.001551
http://dx.doi.org/10.1364/OL.35.001551
http://dx.doi.org/10.1103/PhysRevA.82.043828
http://dx.doi.org/10.1103/PhysRev.174.813
http://dx.doi.org/10.1103/PhysRev.174.813
http://dx.doi.org/10.1364/OE.20.006720
http://dx.doi.org/10.1103/PhysRevLett.98.147401
http://dx.doi.org/10.1103/PhysRevLett.98.147401
http://dx.doi.org/10.1103/PhysRevB.72.155412
http://dx.doi.org/10.1103/PhysRevB.72.155412
http://dx.doi.org/10.1103/PhysRevB.71.165407
http://www.comsol.com/
http://dx.doi.org/10.1021/jp0675025
http://dx.doi.org/10.1103/PhysRevLett.105.077401
http://dx.doi.org/10.1134/S1054660X09170083
http://dx.doi.org/10.1134/S1054660X09170083
http://dx.doi.org/10.1126/science.1089171
http://dx.doi.org/10.1126/science.1089171
http://dx.doi.org/10.1021/nl100222k
http://dx.doi.org/10.1021/nl100222k
http://dx.doi.org/10.1021/nl200612f
http://dx.doi.org/10.1088/0953-8984/24/7/073202
http://dx.doi.org/10.1088/0953-8984/24/7/073202



